Innovative Energy Storage Technologies
Opportunities for the OSCE Area

Jochen Penker
Director for International Energy Affairs
Federal Ministry for Sustainability and Tourism
27th OSCE Economic and Environmental Forum, Session III
12 September 2019, Prague

Message:

Finding a cost-efficient and universal solution to the question of storing renewable energy is the key to maximising its contribution to the energy mix, to improving energy security and achieving a substantial reduction of CO2 emissions.
Change in global energy demand 2017 – 2040

Source: IEA, World Energy Outlook 2018

100% of total national electricity consumption from renewable sources

45-50% share of renewable energy in final energy consumption
The “4 F” - Flexibility is Key

1. Flexibility in Energy Supply
 - sector coupling - design intelligent system solutions
 - coupling power, heating/cooling and transport sector

2. Flexibility in Consumption
 - buffering (thermal) energy for heating and cooling
 - adapt industrial and commercial processes

3. Flexibility through Storage Facilities
 - power storage (i.e. hydro pump storage, underground pumped hydro, battery storage)
 - heat storage
 - Thermal pumped-storage hydropower
 - gas storage
 - hydrogen storage (presented at the OSCE conference in Bratislava)

4. Flexibility through Smart Network Management
 - smart electricity networks
 - flexible heat networks

Production of Green Hydrogen

Source: https://www.h2future-project.eu/technology
Underground Sun Conversion

Using existing natural gas reservoirs for conversion and storage of renewable energy

Source: RAG Austria
Underground Pumped-Storage Hydropower

Thermal Pumped-Storage Hydropower

Hybrid hydraulic energy storage (heat and electricity) for energy supply of entire cities and urban areas

Source: TU Graz
Underground Pumped-Storage Hydropower combined with Seawater Desalination

The future supply of renewable energy and drinking water - Presentation at HYDRO 2019 Conference, Porto, 15 October 2019

Economic Feasibility
Summary

• **Innovative energy storage**: economically viable key technologies for green growth already exist

• **Sector-coupling, multifunctional and resource-efficient storage facilities** for global implementation

• **Underground construction** fully addresses various environmental challenges

Summary

• **Scalability** of renewable hydrogen and underground (thermal) pumped storage hydro power – **deployment regardless of location** (independence of natural topography)

• **Strengthening** national/local economy over entire lifecycle

• These innovative storage technologies will be **key success factors** of the energy transition
Summary

• **Renewable hydrogen** and underground (thermal) **pumped-storage hydro power** have great potential throughout the OSCE area

• For instance on the **Caspian Sea**, Seawater UPH combined with desalination can provide secure, sustainable and reliable energy and drinking water

• **Partnership OSCE/international financial institutions** to implement a **pilot project**, possibly within the OSCE project “Promoting Green Ports and Connectivity in the Caspian Sea Region”

Thank you!

Jochen Penker
Director for International Energy Affairs
Jochen.penker@bmnt.gv.at