

Environmental Policy Research Centre

Forschungsstelle für Umweltpolitik

Best Practice Examples -Quota Obligations and Tender Schemes

David Jacobs

Baku, Azerbaijan, December 2009

Organization for Security and Office in Baku

Agenda

Quantity based support instruments

1) Quota obligations

- Tradeable Green Certificates (TGC) in EU countries
- Renewable Portfolio Standard (RPS) in the United States

2) Tender schemes

- France, UK

Price versus quantity

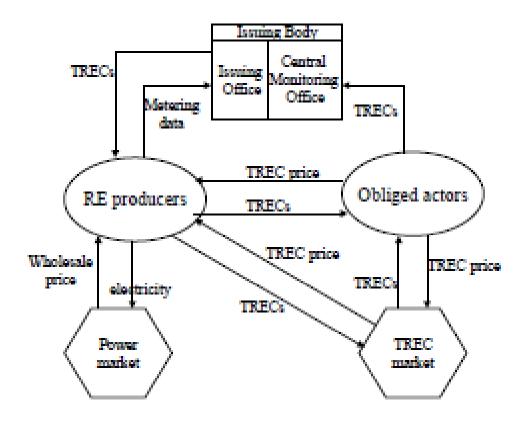
• Difference between price-based and quantity based support mechanisms (primarily Feed-in tariff vs. quota obligation)

SUPPORT MECHANISMS	Price	Quantity
Feed-in tariff	"Political price"	Market
Quota-based support/ Tender	Market	"Political quantity"

Quota obligations (TGC and RPS)

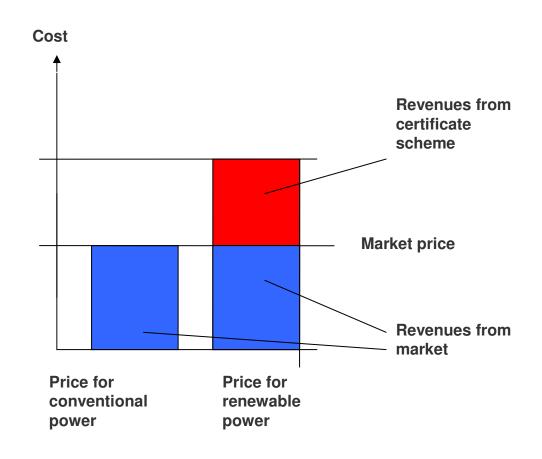
Quota based support – obliged parties

- Obliged party (producer, consumer or supplier) has to provide a certain percentage of renewable electricity in a given year
- Examples:
 - California (supplier): 22 % in 2010; 33 % in 2020
 - UK (supplier): 15.4 in 2015
 - → Steadily increase the target over time


Quota based support – compliance

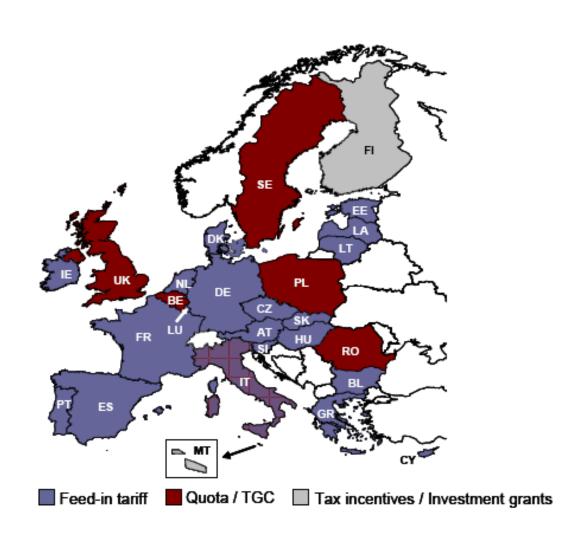
- Obliged party has different options to prove compliance with quota based obligation
 - Produce renewable electricity
 - Buy renewable electricity (bi-lateral, physical trade)
 - Trade certificates (multi-lateral, virtual trade)
 - → Certificate trading is to increase flexibility of the support instrument

How does certificate trading work?



ECN 2005

Source: Jacobs 2005

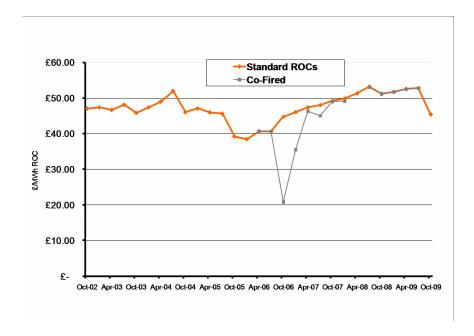


Quota obligations

International best practise

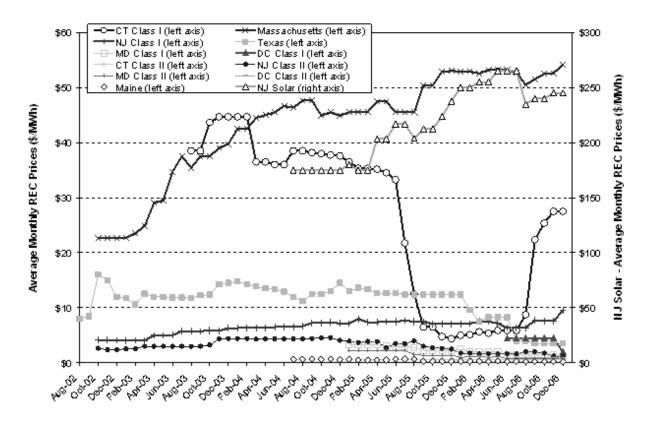
Quota based mechanisms in the EU (red)

RPS in the USA


www.dsireusa.org / November 2009 WA: 15% by 2020* ME: 30% by 2000 VT: (1) RE meets any increase New RE: 10% by 2017 MN: 25% by 2025 in retail sales by 2012; MT: 15% by 2015 (2) 20% RE & CHP by 2017 ☼ NH: 23.8% by 2025 (Xcel: 30% by 2020) ND: 10% by 2015 MI: 10% + 1,100 MW MA: 15% by 2020 OR: 25% by 2025 (large utilities)* by 2015* + 1% annual increase 5% - 10% by 2025 (smaller utilities) (Class I Renewables) SD: 10% by 2015 WI: Varies by utility; ☼ NY: 24% by 2013 RI: 16% by 2020 10% by 2015 goal CT: 23% by 2020 NV: 25% by 2025* **IA: 105 MW** ☼ OH: 25% by 2025[†] CO: 20% by 2020 (IOUs) **☼ PA: 18% by 2020**[†] WV: 25% by 2025*† 10% by 2020 (co-ops & large munis)* **☼ IL: 25% by 2025** ☼ NJ: 22.5% by 2021 CA: 33% by 2020 UT: 20% by 2025* KS: 20% by 2020 VA: 15% by 2025* ☼ MD: 20% by 2022 MO: 15% by 2021 **☆ AZ: 15% by 2025** ☼ DE: 20% by 2019* NC: 12.5% by 2021 (IOUs) ☼ DC: 20% by 2020 10% by 2018 (co-ops & munis) ☼ NM: 20% by 2020 (IOUs) 10% by 2020 (co-ops) TX: 5,880 MW by 2015 29 states & DC HI: 40% by 2030 have an RPS 6 states have goals State renewable portfolio standard Minimum solar or customer-sited requirement State renewable portfolio goal Extra credit for solar or customer-sited renewables Solar water heating eligible Includes non-renewable alternative resources

Quota based support - Best practise

- Liquidity of market needed (large number of actors and project; international market?)
 - Certificate market
 - Conventional power market


Source: http://www.e-roc.co.uk/graph.cfm

Quota based support - Best practise

 Price volatility of different certificate trading schemes in the US (2002-2006)

Source: Mendonca et al. 2009

Minimum level for certificate price

- Minimum certificate level to reduce investment risk in immature markets
- De facto security of price based support instruments

1. Technology-specific minimum prices in Flanders (2006):

	Wind Onshore	Hydro	Solar	Biomass and others
Minimum prices [€/MWh]	80	95	450	80

3. Transitional minimum prices in Sweden (bonus on the electricity price):

	2004	2005	2006	2007	2008
Minimum prices [€/MWh]	6.5	5.4	4.4	3.3	2.2

Source: Optres 2007

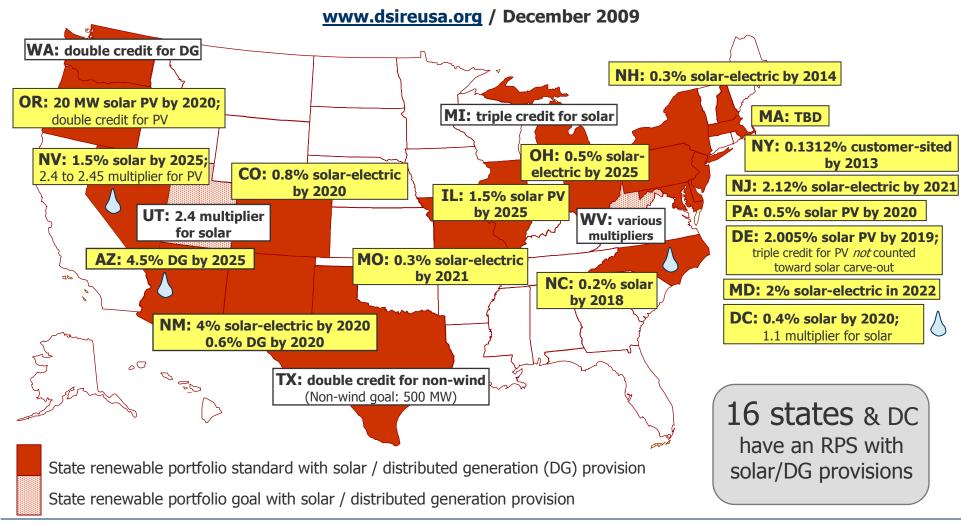
Penalties for non-compliance

- Penalty for non compliance needs to be sufficiently high
- Significantly above the marginal generation costs
- Penalty = maximum certificate price
- Sweden has linked the penalty to the certificate price (150% of certificate price)

Quota targets, fulfilment and penalty level in Sweden:

Compliance	period	2002/2003	2003/2004	2004/2005
RES-E targe	t	7.4%	8.1%	10.4%
Quota fulfilli	ment	77 %	99 %	99,9 %
Penalty	SEK/MWh	175	240	306
	€/MWh	18.98	26.03	33.19

Source: Swedish Energy Agency


Long time frame for support

- Time frame should reflect long-lifetime of renewable energy power plants (more than 20 years)
 - UK ROC scheme timeframe until 2037
 - Sweden: original time horizon until 2010 crucial problem for investment security

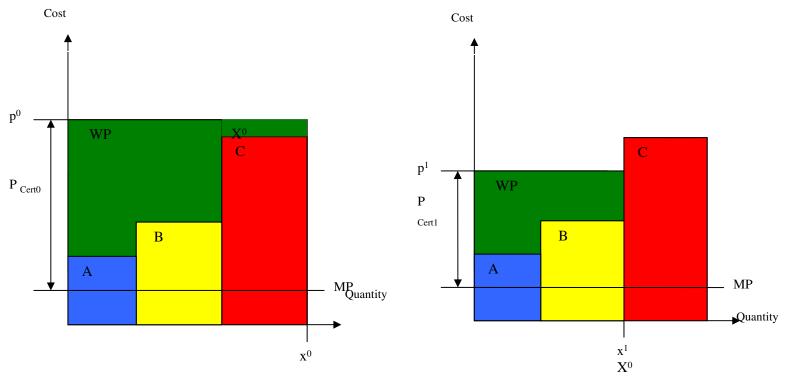
Technology specific support

Technolgy-specific quotas (RPS in US)

Technology specific support

- Certificate banding (UK)
- Different numbers of years for issuing certificates (Italy)
- Combination with other instruments (FIT for solar in Italy)

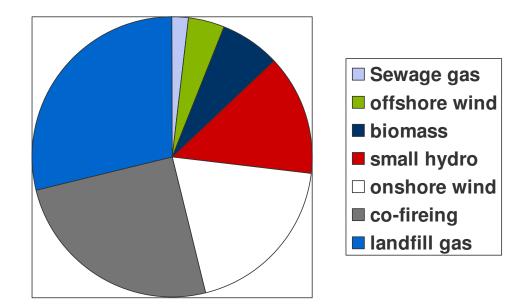
Generation type	ROCs/ MWh
Landfill Gas	0.25
Sewage gas, Co-firing of biomass	0.5
Onshore wind, Hydro, Co-firing of energy crops, Co-firing of biomass with CHP, Energy from waste with CHP, Geopressure, Standard gasification & pyrolysis	1
Offshore wind, Biomass, Co-firing of energy crops with CHP	1.5
Wave and tidal stream, barrage and lagoon (up to 1GW), Advanced gasification & pyrolysis, Anaerobic digestion (AD), Energy crops with or w/o CHP, Any Biomass with CHP, Solar photovoltaics, Geothermal, All microgeneration (sub 50kW, e.g. small wind)	2



Quota obligations – pros and cons

Quota obligation - Advantages

- Exact target achievement (in theory)
- Cost efficiency through focus on least cost technologies (additional support for less mature technologies is needed)


Source: Jacobs 2005

Quota obligation - Disadvantage

- Exclusive support of low cost technologies
- Certificates issued in the UK (2007)
- Wave power, solar PV and micro hydro were excluded

Source: Ofgem 2007

Quota obligation - Disadvantage

- Little investment security (volatile market and certificate price) requires risk premium for financing (increased capital costs)
- Little dynamic efficiency (focus on mature technologies), de facto penalizing technological innovations

Quota obligation - Disadvantage

- Best applicable in fully liberalized electricity markets
 - Large number of independent renewable power producers (for liquidity on certificate market)
 - Large number of independent conventional power producers (for liquidity on the spot market)
 - → Countries with long-term tradition in liberalized energy markets

Tender/auctioning mechanism

Tender/auctioning mechanism

- Government issues call for tender
 - Either for total investment cost of one project (investment focused)
 - Generally: cost per unit of electricity (generation focused)
 - For example: 100 MW wind energy onshore
- Bidder with the lowest price "wins" contract and has the exclusive right for renewable electricity generation
- Bid normally includes power generation cost for a long period of time

Tender mechanism

- International best practise

Tender – International best practise

- Used in Ireland (until 2005), England (until 2003), France, Denmark (offshore wind) and China (until 2009)
- Tenders should be technology specific
- Continuity of calls for tender in order to create sustainable market growth (avoid stop-and-go cycles)
- Auctioned capacity should not be to low (transaction costs) nor too high (strategic bidding)
- Establish a high penalty for non-compliance (to avoid unreasonably low bids)

Tender – Pros and cons

Tender - advantages

- High degree of cost-efficiency because lowest bidder is chosen (theoretically)
- Legislator can require additional "demand" (regional distribution, etc).
- →Direct control of legislators over power plant selection (China)

Tender – disadvantages

- Low effectiveness because of low bids and non-fulfillment of projects
- Stop-and-go development cycles insecurity for industry
- Difficulty of establishing a national industry (UK experience) because of import of cheapest technologies
- Intense price competition favors large players (utilities) or public companies (without profit interests)

Thank you for your attention!

David Jacobs
Environmental Policy Research Centre
david.jacobs@gmx.de
http://www.fu-berlin.de/ffu/

