Biomass

Sources of Biomass

- Wood
- Energy crops
- Organic wastes

Wood Pellet Boilers

- Domestic CH boilers usually pellet
- High efficiency, high convenience, fully automated systems
- Need dry storage facility (pellets disintegrate when wet): approx 6m³ for 3 tonnes
- Option for auto-feed direct from storage via auger or manually fed internal hopper
- If auto-feed, boiler must be adjacent to storage
- Larger houses may be suitable for a chip or log system

OSCE Organization for Security and Co-operation in Europe Office in Baku

10 kW central heating boiler

3 tonne storage silo

Biomass Renewable sources and technologies

• Biomass

- Short rotation coppice
- Tradable fuels
 - Wood pellets
 - Wood chip

Biomass practicality matrix								
Resource	Sector							
	Domestic	Public	Commercial	Industrial	Agricultural			
Wood Pellets	*							
Wood Chip		*	•	*	•			
SRC wood chip ²¹ (2012)		•	*	•	•			

Biomass sources and technologies

- Good growing conditions in AZ
- World's fourth largest producer of cotton
- Arable land covers 18,000km2
- Permanent crops 2,200km2
- Permanent meadows 26,900km2
- Forest area 9,360km2
- Over 7 million cattle; over 6 million poultry

Wood

- Harvest wood from woodlands and forestry
- Recover forestry and saw-mill wastes
- Recover arboricultural trimmings
- Wood pellets
 - Small-scale installations in domestic sector
- Wood chip
 - Larger scale installations across non-domestic sectors

Wood

Chips

Lower fuel cost
Higher capital cost
Bulky material
Non-domestic
30kW and above
Boilers and large CHP

Pellets

Higher fuel cost
Lower capital cost
Clean, easy to handle
Domestic and non domestic
Range of appliances

Chips

Pellets

Biomass – constraints, economics, actions

- Practical potential limited by resource constraint
- Practical actions
 - Stimulate fuel supply chain
 - Encourage procurement of biomass installations in public sector to provide early market
- Economic potential
 - Payback periods less than 6 yrs for pellet, chip and other applications off-gas across sectors without support and when capex offset against cost of replacing like for like.

Economic actions

- Main economic barrier is initial capital outlay

Waste

- Wastes total high estimated practical potential
 - Landfill gas
 - Municipal and commercial waste Energy from Waste plant
 - Sewage treatment
 - Industrial waste
- Electrical power generation gives greater economic benefit from both landfill gas and energy from waste schemes
- Combined Heat and Power (CHP) over 80% efficient
- Heat/CHP potential from sewage treatment biogas. Heat and electricity potential from recycled timber but level of contamination (paint, lacquers, glue, nails etc) is an issue

Waste

- Driven by needs and costs to deal with waste
 - Avoids landfill
 - Technologies include incineration, gasification, anaerobic digestion and pyrolysis

Cost of emissions abatement

- Large scale can release emissions of NOx and other pollutants, like any conventional power plant
- Electricity generation only or CHP if close to heat demand improves cost effectiveness

Waste Sources

- Landfill gas
 - Mostly electricity generation only
- Energy from Waste plant
 - Potential heat output with CHP

Sewage sludge

Straight incineration or conversion to a biogas by anaerobic digestion prior to combustion in CHP

Recycled timber

Wood chip co-firing in power stations

Agricultural wastes

- Cattle slurry
 - Anaerobic Digesters on agricultural sites or at local dairies
- Poultry litter
 - Use on agricultural sites
 - Co-fire with wood in industrial or district heating plant

Agricultural Wastes

- Slurries may not be economic unless locally used
 - Aspect of cost relates to transport/delivery costs. Where this is not required e.g. where resource used on or near site then resource may be economically viable.
- Poultry litter is viable. It can be incinerated along with wood wastes

Opportunities for biomass in Azerbaijan – issues for investigation

- Investigation of land use for energy crops
- Investigation of waste management strategies
- Investigate and assess specific industrial applications for biomass heat and electricity
- Identify agricultural Anaerobic Digestion sites giving the best economic case
- Investigate usefulness of available tools for spatial or geographic targeting of biomass developments and support

Anaerobic digestion plants

- Lubeck, Germany
- Used for municipal waste treatment

Organization for Security and Co-operation in Europe Office in Baku

AD

- Neumunster Farm-Scale AD plant, Germany
- Digests silage and slurry

Organization for Security and Co-operation in Europe Office in Baku

Biogas from Anaerobic Digestion

- A mixture of mostly methane and CO2
- Can be used to generate heat and electricity onsite in a CHP engine
- Can be filtered and methane concentration increased
 - Allows injection into the natural gas grid
 - Reduces demand for natural gas which can be exported for revenue
- Can be used for transport
 - Reduces demand for oil

Gasification and Pyrolysis

- Gasification and Pyrolysis convert organic wastes into a synthetic gas (syngas) for combustion
- Gussing gasification plant, Austria

Summary of Biomass

- Variety of resources available used for heat or electricity or both
- Type of generation is linked to resource availability
- Biomass and Biogas can be used to provide a baseload electricity generation
- Requirement for study into resource availability in Azerbaijan
 - Types of resources
 - Quantities of resources
 - Suitable conversion technologies combustion, anaerobic digestion, gasification and pyrolysis
 - Levels of generation possible
 - Location of plants

 Potential for job creation in developing biomass supply chains
 Organization for Security and Co-operation in Europe

Hydroelectric Power

History of Hydro Energy

- Concept dates back 2000 years in form of waterwheels mechanical energy
- In 1086AD the Domesday Book recorded 5,624 water driven mills in England
- First used to produce electricity in 1882, Fox River, Wisconsin
- Hydro electricity was initially more reliable and efficient than fossil fuel plants
- Increase in demand made coal & oil generators more popular

Hydro Electricity

- Contributes 60% of electricity in Canada
- Contributes 15% of electricity worldwide
- Norway, with its reserves of oil and gas, obtains 98% of its electricity from hydro
- Small Hydro is considered less than 10MW in Europe

Hydro in NI

- Provided first electricity supply in NI
- Col William Traill, Portrush to Bushmills electric tram 1883 – 1949 (66yrs)
- Roe Valley Country Park, Limavady
- Operational between 1896 1963 (67yrs)
- First electricity outside of Belfast

Courtesy of BBC Northern Ireland

More About Hydro

- Absence of high mountains = run of river schemes
- Recent emphasis on renewables has seen rejuvenation in established millraces
- Range in size from few kilowatts to several megawatts
- Small-scale hydro is a renewable energy technology
 - No large environmental impact from damming rivers
 - More environmentally friendly

Typically described as below 10MW (EU classification)

Organization for Security Co-operation in Europe Office in Baku

Sion Mills, intake to Herdman's Mill hydro scheme on Mourne River Organization for Security and Co-operation in Europe Office in Baku

750kW hydro scheme

What Does a Modern Hydro Turbine Look Like?

Organization for Security and Co-operation in Europe Office in Baku

Francis Turbine Example of a Large Turbine for a Turkish installation, 120MW

Note: Scale -

Organization for Security and Co-operation in Europe Office in Baku

Courtesy of VA Tech website

Kaplan (propellor) turbine Example of a Large Turbine for a Sudanese installation

Organization for Security and Co-operation in Europe Office in Baku Courtesy of VA Tech website

Smaller Scale 410KW Turbine System

OSCC Organization for Security and Co-operation in Europe Office in Baku

Courtesy of VA Tech website

Pelton Wheel

OSCC Organization for Security and Co-operation in Europe Office in Baku

Output power from hydro schemes

- Dependent on:
 - available flow of water (Q) in m3/s
 - Head the height through which the water falls (H) in m
- Expressed as:
 - $P = \rho g H Q \eta$
 - Where P = rated output (kW)
 - $-\rho$ = water density (kg/m3)
 - g = acceleration due to gravity (m/s2)
 - H = head (m)
 - Q = flow (m3/s)
 - $-\eta$ = turbine efficiency
- A site with a high head and low flow can give the same power output as a site with a low head but high flow

O S C C Organization for Security and Co-operation in Europe Office in Baku

Appropriate turbine designs for selected head heights and specific speeds

- Specific speed is used to determine turbine type
- It is related to rpm and head

Single jet Pelton	Multi jet Pelton / Turgo / Cross-flow	Francis	Kaplan / Propellor	Specific Speed	Application
				7	High head
				27	High head
				39	Med. Head
				60	Med. Head
				175	Med. Head
				300	Low Head
				900	Low Head

Organization for Security and Co-operation in Europe Office in Baku

How Is it Renewable?

- Water is naturally replenished through hydrological cycle
- Small hydro schemes do not have significant environmental impacts

Typical Scheme Designs

Low Head Scheme Layout

Less than 5m

Medium Head Scheme Layout

More than 5m

How Does the System Work?

Water Intake System

 Covers process of extracting water from normal river flow. Includes weir intake and screens

Delivery System

Delivers water from intake to "power house" and back to the river

Power Generation System

 Turbine, drive mechanism or transmission and electricity generator – includes power house

Electricity Distribution System

- Distributing electricity from generator to grid or to point of use within stand alone system
- Includes control mechanisms necessary to managing loads and power quality and batteries where necessary

Co-operation in Europ Office in Baku

Advantages of Hydro Electricity

- Hydro stations require few staff
- Low maintenance
- Requires no fuel, just the hydro resource
- Cost of generation not subject to change
- Sustainable, turbines could last for over 100 years
- Non-polluting e.g. CO₂, SO₂, NOx doesn't contribute to Global Warming or acid rain

Hydroelectricity in Azerbaijan

- About 10% of gross theoretical hydro power has been developed in Azerbaijan
- It is the largest modern form of renewable energy generation in Azerbaijan
- About 1000MW of hydro currently installed includes large scale and small-scale plants
- Economics vary greatly from site to site, depending on construction work required
- Remote generation can support local electricity grids

Three gorges dam in China

• The worlds largest electricity generator of any kind – 22,500MW. Not small-scale!

Ce Organization for Security and Co-operation in Europe Office in Baku

Small-scale hydro Summary

- Applicable in Azerbaijan
- Expertise already exists
- Study of locations and technically achievable outputs is required
- Project ongoing funded by UNDP
 - Small hydro power plants in Azerbaijan could supply 5TWh about 25% of electricity demand. This estimate needs to be refined to determine feasibility
- Development cost is very site specific
 - Depends on flow and head resource
 - Civil works required
 - Grid connection costs

