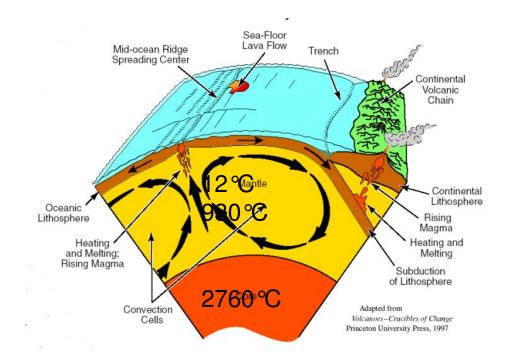
Geothermal Power

What Is Geothermal Energy?


 'Geothermal Energy is the energy stored in the form of heat below the surface of the solid earth'

How Hot is it?

 'Geothermal Gradient defines the vertical temperature increase below the earth's surface'

Worldwide Average is c. 3°C increase per 100m depth

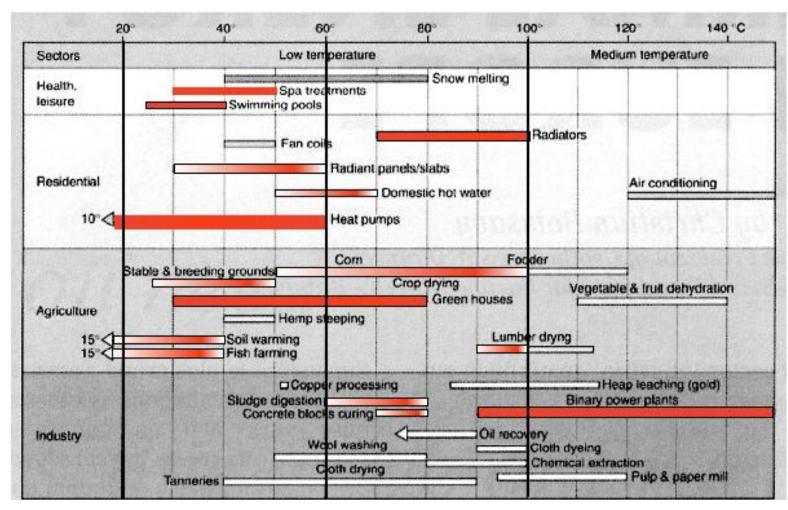
Geothermal Energy Utilisation:

• Soils (Ground Source Heat Pumps) 9-11 ℃

Surface & Marine Water
 5-15 ℃

Shallow Groundwater Aquifer cool, high vol

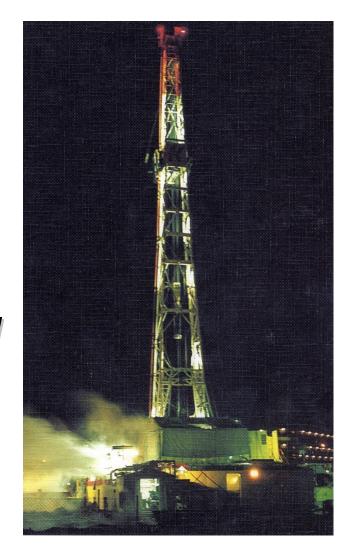
Urban Heat Island
 13-18 ℃


Warm Springs, Shallow Heat 15-23 ℃

Medium Depth Heat
 25-75 ℃

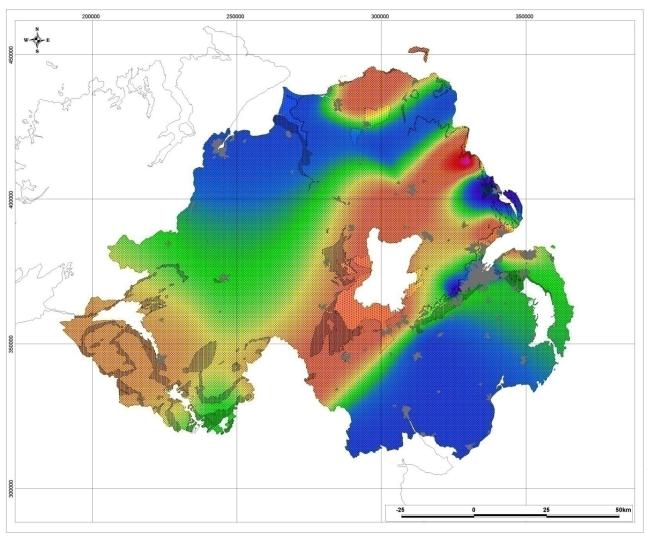
• Deep Heat 100-150+℃

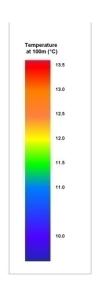
Geothermal Energy Utilisation:

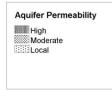


Boissavy, 1997, European Geologist 5, after Lindall 1973

Geothermal Energy in Northern Ireland and Azerbaijan

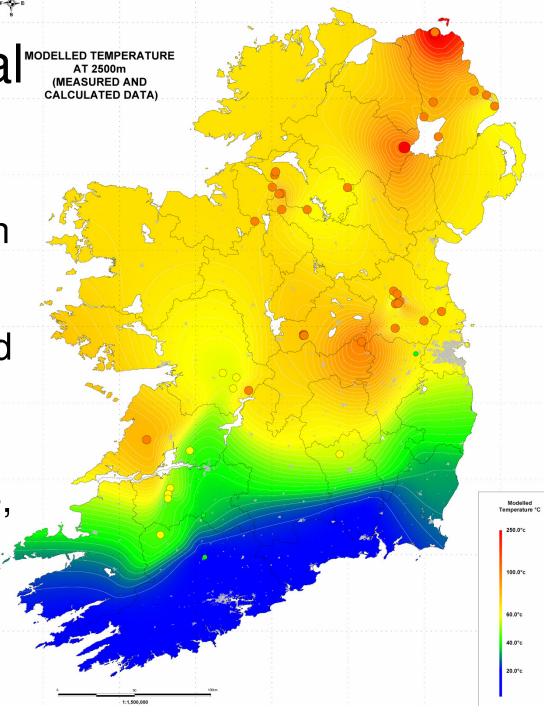

Shallow Geothermal Potential of Northern Ireland


 Defined Temperature Profiles of Northern Ireland Groundwater Aquifers based on existing borehole Measurements


 Results of the study showed a Relationships between Aquifer Permeability and Temperature at 100m where More Permeable Aquifers supply Greater Amounts of Energy to shallow GSHP collectors

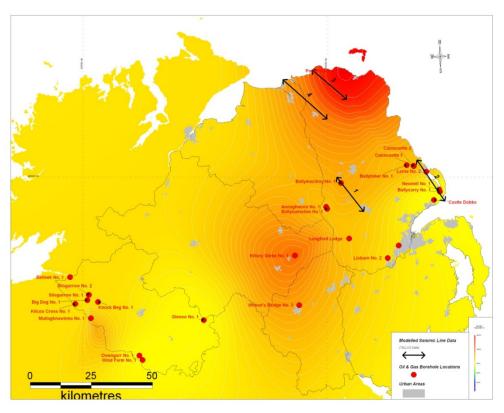
Shallow Geothermal Potential

At 100m depth


Deep Geothermal MODELLED TEMPERATURE AT 2500m (MEASURED AND CALCULATED DATA)

Potential

 Geothermal Potential of Northern Ireland at 2.5km depth


 Temperature Record from Exploration Oil & Gas wells

 Geothermal Targets in the Rathlin, Larne, Lough Neagh and North West basins

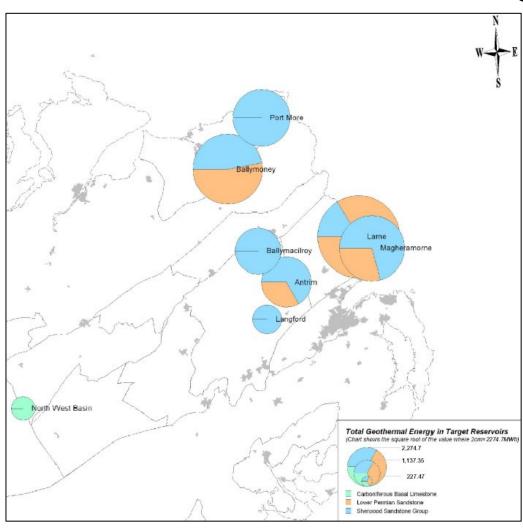
Defining the Potential of Geothermal Targets

Using:

- Existing Oil & Gas well data in Northern Ireland
- Existing Seismic line data

Define the Thickness, Geometry & Depth of the target reservoirs

Stored Energy in Northern Ireland Reservoirs


- Deeper, Thicker and Higher Temperature reservoirs contain Higher Quantities of Energy
- Ranked Target Formation Total Energy in MWh per year

Formation Ranking	Site Location Rank	Site Location	Formation	Reservoir Thickness (m)	Base of Geothermal Target Formation (m)	Volume of Source Rock (V) (m³)	Energy Stored in the Reservoir (kJ _{th})	Total Energy Stored in the Reservoir (MW h)
1	1	Larne	Lwr. Permian Sandstone	900	2800	56250000	8.19E+09	2274.70
	2	Ballymoney	Lwr. Permian Sandstone	500	2200	31250000	3.86E+09	1073.33
,	<i>3</i>	Magheramorne	Lwr Permian Sandstone	250	2200	15625000	1.90E+09	528.84
	4	Antrim	Lwr. Permian Sandstone	200	2200	12500000	1.36E+09	378.22
	1	Port More	Sherwood Sandstone	680	1830	42500000	5.24E+09	1456.08
	2	Magheramorne	Sherwood Sandstone	650	1600	40625000	4.62E+09	1281.96
	3	Ballymacilroy	Sherwood Sandstone	420	1870	26250000	3.54E+09	983.50
2	4	Ballymoney	Sherwood Sandstone	500	1400	31250000	3.43E+09	951.69
	<i>5</i>	Antrim	Sherwood Sandstone	400	1600	25000000	2.74E+09	761.35
	6	Langford Lodge	Sherwood Sandstone	270	1515	16875000	1.61E+09	446.12
	7	Larne	Sherwood Sandstone	650	1615	14625000	1.58E+09	439.53
3	1	North West Basin	Carboniferous Basal Sandstone	150	2000	9375000	1.15E+09	318.65

Conservative Estimates

Defining the Potential of Geothermal Targets

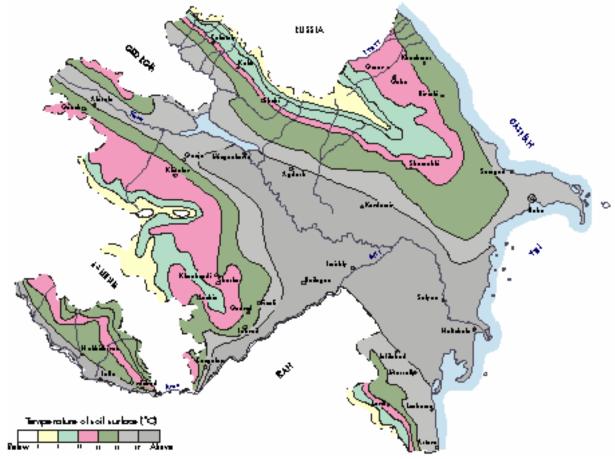
High
 Geothermal
 Potential in the
 Larne, Rathlin,
 Lough Neagh
 and North
 West Basins

How do Northern Ireland Reservoirs Compare to Operating Plants?

Formation Ranking	Site Location Rank	Site Location	Formation	Reservoir Thickness (m)	Base of Geothermal Target Formation (m)	Total Energy Stored in the Reservoir (MW h)
	1	Larne	Lwr. Permian Sandstone	900	2800	2274.70
1	2	Ballymoney	Lwr. Permian Sandstone	500	2200	1073.33
1	3	Magheramorne	Lwr Permian Sandstone	250	2200	528.84
	4	Antrim	Lwr. Permian Sandstone	200	2200	378.22
2	1	Port More	Sherwood Sandstone	680	1830	1456.08
	2	Magheramorne	Sherwood Sandstone	650	1600	1281.96
	3	Ballymacilroy	Sherwood Sandstone	420	1870	983.50
	4	Ballymoney	Sherwood Sandstone	500	1400	951.69
	5	Antrim	Sherwood Sandstone	400	1600	761.35
	6	Langford Lodge	Sherwood Sandstone	270	1515	446.12
	7	Larne	Sherwood Sandstone	650	1615	439.53
3	1	North West Basin	Carboniferous Basal Sandstone	150	2000	318.65
		Unterhaching, DE	Jurassic Malm Limestone	350	3600	1069.29

The Unterhaching Geothermal Power Plant (Southern Germany)

Power Output:


47 MW_{th} – District Heating

4.3 MW_e – Electricity Supply

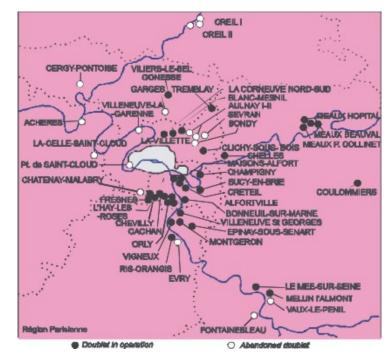
Stored Annual Energy Calculation: 1069.29 MWh

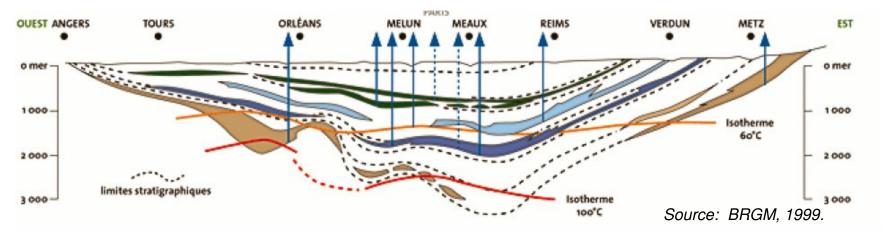
Geothermal Potential of Azerbaijan

Absolute reconsum and minimum of temperature of soil surface

Sherin er	At no forte Marzina na	Alta la la Miniman
Zaka ta Iy	11	1
Klackmax	ır	1
Kirku	- 11	1
S he reher	"	1
Keda bak	-	41
Marit ta gi	=	-
Kierl emir	=	-
Autore	"	-
Kha akand y	"	·r
Nebidovia	=	-1

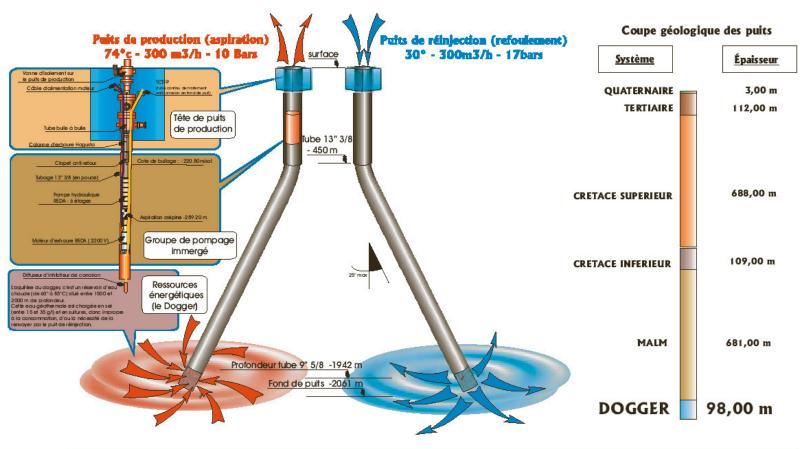
Temperature of soft surface on different height above level of sea


# (#4 - 1	0 0	L=	Falf-la	Hebi <u>—</u> 10		
111	11.1	11.1	17.1			
пі	11.1	11.1	11.7	11.7		
1111	11.1	1 [.1	11.1	11.1		
11111	11.7	11.7	11.1	11.1		
11111	11.1	11.1	11.1	11.1		
ПП	11.1	11.1	11.1	17.1		
INI	11.1	11.1	11.1	11.1		
1111	11.1	11.1	11.1	11.1		
1111	17.1	11.1	17.7	11.7		
11111	11.1	117.1		17.1		
1111	11.1	11.1	•	11.1		
INI	11.1	11.1	•	11.1		
11111	11.1	11.1		11.1		


- 600oC water was extracted from a well on the Apsheron Peninsula, used for oil exploration
- At lower temperatures, the areas of Lenkoran, Massaly, and Astara have produced 40litres/s of water at 40oC from wells, with an estimated production capacity of 25,000m3 per day
- It is highly likely that significant power generation from deep geothermal resources in Azerbaijan is possible

Geothermal Energy in the Paris Basin since 1961

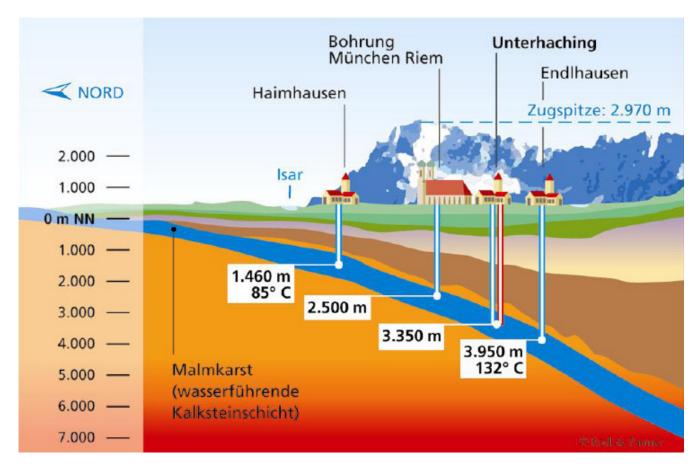
Source: GPC, 2003.



- 32 operating well doublets
- 13 abandoned well doublets

Well Doublet Principles

Principe de fonctionnement des doublets de géothermie de L'Hay les Roses et Chevilly Larue



Société Anonyme d'Économie Mixte pour la Gestion de la Géothermie à Chevilly-Larue et l'Haÿ-les-Roses

Unterhaching – Germany Heat & Electricity

Malm Limestone at 3,350m depth –
 Temperature 123°C – Flow rate 150l/s

Steam and Binary Cycle Power Generation

- Most geothermal power plants extract steam or hot water at temperatures of around 180oC and higher. This is then used to turn a steam turbine
- Binary cycle power plants can use water of lower temperatures, and so can be more adaptable
- Binary cycle uses the hot water to evaporate a fluid with low boiling point, the gas of which is then used to turn the turbine

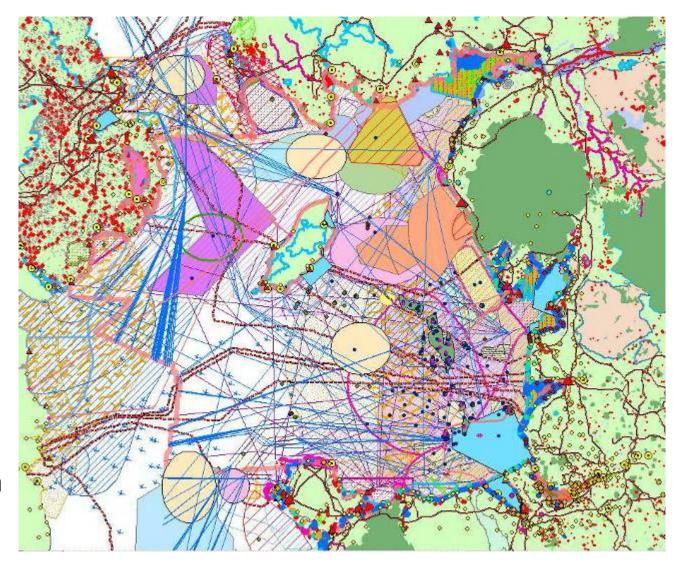
Geothermal Power Plant in Iceland

Unterhaching – Heat & Electricity

HEAT: 47MW_{th} – District Heating

• ELECTRICITY: 4.3MW_e - Kalina Plant

Geothermal Power Summary


- Heat from aquifers can supply district heating and industrial process heat – eg greenhouses
- It is highly likely that electricity generation in Azerbaijan is possible from geothermal resources
- The resource requires detailed mapping
- Evidence suggests that the resource is better than that being exploited in Unterhaching, Germany
- Geothermal energy is not intermittent
- Generation of electricity and heat will free natural gas for export

Marine Power

- Landuse
- Tourism
- Oil &Gas
- Mariculture
- CoastalDefence
- Ports & Navigation
- MilitaryActivities
- Culture
- Conservation
- Dredging & Disposal
- SubmarineCables

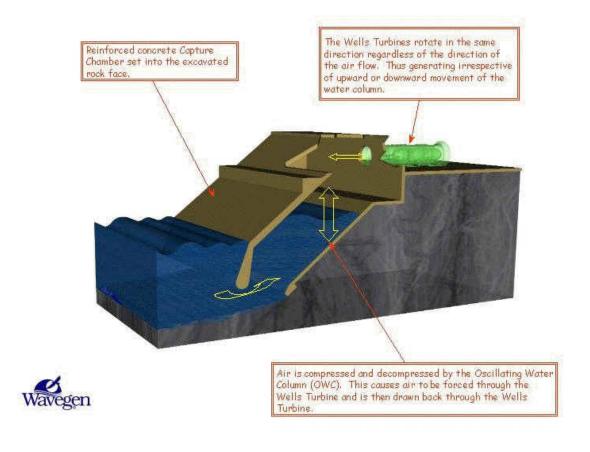
Fishing Renewable MarineEnergy Recrease

MarineRecreation

MineralExtraction

Wave Energy

- Great potential energy is available from the sea as wave energy, where the rise and fall of waves, or their horizontal motion can be captured to generate electricity
- Estimates put the European wave energy resource at 400 TWh – 17% of the EU demand for electricity
- Portugal, France, Ireland, UK and Norway are all best placed to receive the largest waves
- The northern coast of the Apsheron Peninsula may have potential for wave power development



Oscillating Water Columns

- Capturing waves in an enclosed space creates an oscillating water column (OWC)
- The OWC can be used itself to turn a hydroelectric turbine, or it can push air through an air turbine
- The force will flow in two directions, and so the turbine needs to be capable of generating from a bi-directional flow

Shoreline Wave Energy Devices

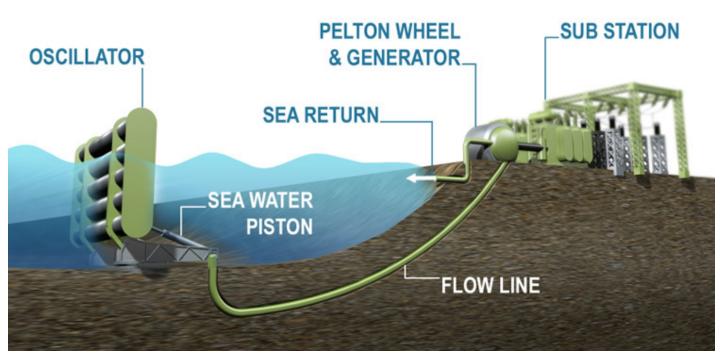
- Oscillating water column system
- Developed by QUB and Wavegen
- Rising water column pushes and pulls air through the Wells Turbine
- Grid connected on Islay in 2000



Tapered Channels and Overspills

- Seawater can be trapped in a tapered channel, pushing through a turbine
- This requires high pressure
- Has been trialled in Norway
- Overspills a concrete wall which captures seawater as it spills over the top
- Seawater is released at the bottom, passing through turbines

Wavedragon is a type of overspill system



Point absorbers and terminators

- These systems amplify the movement of the waves
- Absorbers can extract energy from multiple directions
- Attenuators are similar but use the force of one section being restrained relative to its neighbour
- The first wave farm is installed in Portugal comprising attenuator type systems, with a total installed capacity of 2.25MW

Oyster is a type of absorber system

- Seabed flap device
- "Oyster"
 concept
 developed at
 QUB by Prof.
 Trevor Whittaker

- Pressurised seawater delivered to the power take off unit
- Designed to extract energy from shallow water surge forces

Pelamis is a type of attenuator system

Tidal Energy

Tidal Energy

- Enormous energy stored far out at sea in the tidal stream
- Seen as greatest long term contributor to renewables
- The technology used to convert this to useful electrical energy is the Marine Current Turbine

Marine Current Turbine

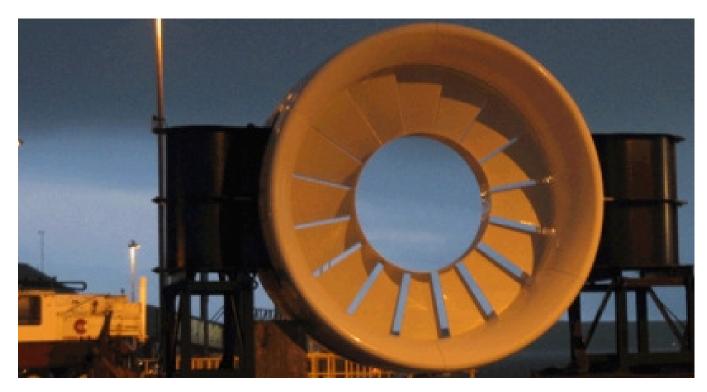
- Same principle as a wind turbine, underwater
- Higher energy intensity than air so 10-20RPM sufficient
- 10 times slower than a ship propeller so little ecological impact
- 11m 30m blade diameter = 300kW 1MW
- Water is 40 times denser than air, so tidal stream turbines can be much smaller than wind turbines, or generate much more electricity

Proposed Marine Current Turbine design

Marine Current Turbines



- Twin power units mounted on winged extensions
- Installed in Strangford Narrows, Northern Ireland in May 2008
- First tidal stream turbine to export electricity to the Grid


- One turbine experienced a computer fault resulting in a damaged blade during commissioning
- Full commissioning now taken place and 1.2MW generated

1MW MCT Vs 1MW Off-shore Wind

Open Hydro – showing the venturi shroud



Marine Energy Centre in Orkney, December 2006

- Open centre slow moving rotor
- Permanent magnet in outer rim
- Installed at the European

Evopod

- Floating tethered device
- Plans to test a 1/10th scale prototype
- Can be deployed in waters over 40m depth where greater tidal stream energy is located

Tidal Barrages

- Large dams built across river deltas
- Captures the incoming tide, retains it, and then releases it through tunnels containing turbines
- The largest is on the La Rance Estuary in France
- It has 240 MW peak generating capacity

La Rance tidal barrage

Wave and Tidal Energy Summary

- Could be the second largest supply of renewable electricity in certain countries – Ireland, Scotland, Portugal. 10% of Ireland's electricity could be supplied by wave and tidal by 2020
- Resource requires investigation and detailed mapping
- Offshore wave hub is being installed off the coast of England to allow several systems to connect offshore
- Tidal is highly predictable
- Azerbaijan may have a wave resource, but has no tidal resource

