The OSCE Secretariat bears no responsibility for the content of this document and circulates it without altering its content. The distribution by OSCE Conference Services of this document is without prejudice to OSCE decisions, as set out in documents agreed by OSCE participating States. EEF.DEL/38/20 17 June 2020

ENGLISH only

28th OSCE Economic and Environmental Forum Second Preparatory Meeting

DRR: Natural hazards and NATECH events

- Natural hazards (weather-related, geophysical, health-related) are the biggest threat to human safety and wellbeing
- They can be followed by associated technical failures NATECH events
- In the field of Disaster Risk Reduction (DRR), the lack of coping capacity is the feature that needs to be urgently addressed at national and international levels (corruption, poverty and inequality increase disaster risks)

Lack of coping capacity

- Institutional element
 - DRR (Hyogo Framework for Action, Sendai Framework)
 - Governance
- Infrastructure element
 - Communication
 - Physical infrastructure
 - Access to health system
- Interoperability element

Sendai Framework

- Agreed data model and vocabulary
- Cross-border event identifier

THE SENDAI FRAMEWORK OUTLINES SEVEN GLOBAL TARGETS TO BE ACHIEVED BY 2030: E. Increase the number of countries with national and local disaster risk reduction strategies SUBSTANTIAL REDUCTIONS A. Reduce global disaster mortality 63, F. Substantially enhance international cooperation to developing countries B. Reduce the number of affected people globally (\pm) G. Increase the availability of and access to multi-hazard early warning systems C. Reduce direct economic loss in relation to GDP SUBSTANTIAL \$ INCREASES D. Reduce disaster damage to critical infrastructure and disruption of basic services P

DRR – our technical perspective

- Disaster preparedness requires early warning information from mandated technical organizations like National Meteorological Services, Seismological Services, Geological Services, Environmental Protection Agencies,...
 - **Multi-Hazard Approach**: consider cascades of events; bring together experts from different fields; seamless linking of alerting systems
 - Impact orientation: not the physical strength of the phenomenon is most important, but where and when it strikes (coping capacity, exposure, important infrastructure affected,...)

AMG

ARISTOTLE – Multi-hazard advice for Europe

ARISTOTLE – ENHSP(*) builds upon member states national expertise to improve EC coordination and support the EU-CPM

National Operational Centers

(*) European Multi-Hazard Scientific Partnership

ARISTOTLE Hazard Reports

- Upon request from ERCC, emergency reports are issued within 3 hours
- System is **multi-hazard** and impact-oriented
- Provides expert advice to support international search and rescue operations
- 24x7 operational rotation system

AMG

aggregate, display and make available meteorological and hydrological warnings of NMSs in an easy and understandable way to the general public and to European (re)users operated in the EUMETNET framework

≌ * ₽ \$ 20 £ T = 7 \$ \$ 09

UNISDR Sendai Framework conformal regional description of expected impact and a clear advice what to do

Warning decision on a national basis

Added common value through consistent warning philosophy

Dissemination of warnings to (re)users via RSS and CAP feeds, Alert hub

Meteoalarm 3 C's: Content Communication Co-operation

METEOALARM

Hard facts

- Integrated regional warning system in 33 languages
- Authoritative warning information from 37 NMHSs in WMO Region VI
- Operational since 2007 ٠
- Easy and understandable four level • colour code
- 12 warning parameters •
- Supports impact descriptions and ٠ instructions/advisories
- Considered as best practice by WMO, Worldbank
- Complete Relauch in 2020

Community building

Communication with civil protection on national and European basis (ERCC), integration of national partners

Joint development of guidelines and warning concepts

Enhance cross-border collaboration

Exchange of best-practices: "How is it done in your country"?

Yearly partner group meetings

SEE-MHEWS-A Project

South-East European

Multi-Hazard Early

Austrian contribution to SEE-MWEWS-A: INCA Model

and the

Combining numerical weather prediction models and nowcasting techniques to create the best possible automatic short-range forecast (up to 48h) at high temporal and spatial resolution.

A web-based, weather information system using state-of-the-art nowcasting methods

INCA Method: Merge together all information available

Global Warming – an international game changer

- Due to human activities, global temperature has increased by 1° in the last century
- Until 2100, a further increase by 0.5 ° 1 ° is inevitable
- The temperature increase and its effects **varies regionally** we expect significant increase in severe weather events like heat, drought and storm

Operational climate monitoring

anomaly maps

anomaly time-series

Wien-H	lohe V	Varte 15	16 m								
Tagesr	nittelwe	rt der L	ufttemp	eratur	°C3						
Jahr 201 Bezugsz Extremi	8:7,8 °C retraum 1 retre set	961-2010 1872 (146 UR-Q ¹ ^A -2	0:6,2 'C Jahre)	an an	angra	and and a second	ner ner	July Law	history	ut you	@ ZA
VAL-	WAT	and a	Nulari	unoil				an he	war	under of	In you
Ján	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	De
Autsum	amierte 8: 176 m	Tagess	umme a	es Nier	derschia	igs (mm)	_			1	-
Bezugsz	eltraum 1	981-2010 1872 (148	2:207 mm Jance)								
								-	-		
								-			
				-		-					
				L	_	-					
	~	~	5	-	-	7					
Ján	Feb	Már	Apr	Mai	Jan		Aug	Sep	OH	Nov	@ ZA De:
Jan	Feb	Mar der Sor	Apr	Mai	Jun	74	Aug	Sep	ОИ	Nov	@ ZA De:
Ján Tagess Jahr 201	Feb Lumme 8: 651 h	Mir der Sor	Apr	Mai	Jun er [h]	III	Aug	Sep	он	Nov	@ ZA
Ján Tagess Jahr 201 Bezugsz	Feb summe : 8: 651 h cebraun 1 ceraun 1	Mir der Sor 581-2010	Apr nnensch	Mai	Jun er [h]	Int	Aug	Sep	ОН	Nov	© ZA De: © ZA
Ján Tagess Jahr 201 Bezugsz	Feb iumme) 8: 651 h tetraun 1 tet 1080	Mir der Sor 981-2010	Apr nnensch	Mai	Jun er [h]		Aug	Sap	014	Nov	© ZA
Jain Tagess Jahr 201 Bezugsz Viscon	Feb summe : 8: 851 h tebraun 1 ser 1550	Mir der Sor 981-2010	Apr nnensch	Mai	Jun er (t)	III	Aug	Sep	он	Nov	© ZA Dea
Ján Tagess Jahr 201 Bezugsz	Feb summe i 8: 651 h tetraum 1 ser 1520	Mir der Son 981-2010	Apr nnensch	Mai eindau	Jun er [N]	f / #	Aug	Sep	он	Nov	@ ZA Dea
Jain Tagess Jahr 201 Bezugsz	Feb summe i 8: 651 h cetraun 1	Mir der Son 981-2010	Apr nnensch	Mai	Jun er [N]	л /	Aug	Sep	он	Nov	@ ZA De3 @ ZA
Ján Tagess Jahr 201 Bezugs	Feb summe : 8: 651 h tetraun 1 ser 1980	Mir der Son 981-2010	Apr nnensch	Mail	Jun er [N]	Int	Aug	Sep	он	Nov	© 24 04:

climate extremes (ranking)

	TREME		
<pre>AUFLOSUMS</pre>	Extremente für < ganzes Jahr	>	ноне Tal D Berg
LUFTTEMPERA	TUR MAX	PERATUR MIN	
	REDION Österreich	^{ратим} 13. Aug. 2003	₩ият ₿ 35,6 гс
1. <i>§</i> *	Burgenland	8. Aug. 2013	🛔 38,7 °C
2. 🗰	Wien	8. Aug. 2013	\$ 38,4 m
3. 👐	Karnten	3. Aug. 2013	🌡 37,0 °c
4. 🦛	Steiermark	8. Aug. 2013	🌡 36,3 °C
5. 🖣	Vorarlberg	28. Juli 2013	🌡 36,1 °C
6. 🗮	Niederösterreich	3. Aug. 2013	🌡 36,0 °C
7. 🚸	Oberösterreich	27. Juli 1983	🌡 35,8 °c

Climate Modelling, reference scenarios, mitigation

Regional Climate Modelling (COSMO – CLM) Urban Modelling (MUKLIMO, PALM4U)

300 - 100km

Europe 50km

Alps 10km

Austria 4km

Vienna 100m

Mitigation: Urban Heat Island

- Climate projections for urban areas show increase in heat load for the coming decades
 - Dependent on land-use, urbanization...
 - Mitigation green roofs, parks, water ...
 - Modelling used for city planning

Dissemination, Climate data and information portals

CCCA Climate data portal (operated by ZAMG)

ZAMG Climate monitoring portal

ZAMG Climate information portal

ZAMG/Austria: International Cooperation

Met Service Consulting/Co-operation

- Albania
- Belarus
- Ghana
- Hongkong (nuclear emergencies)
- Moldova
- Myanmar
- Seychelles
- South Korea (Winter Olympics)
- Sri Lanka (Monitoring Network)
- Vietnam

