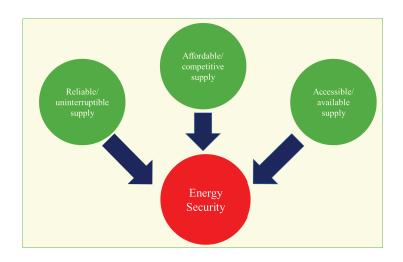
The OSCE Secretariat bears no responsibility for the content of this document and circulates it without altering its content. The distribution by OSCE Conference Services of this document is without prejudice to OSCE decisions, as set out in documents agreed by OSCE participating States.

EEF.DEL/60/22 12 September 2022

ENGLISH only


30th Economic and Environmental Forum Concluding Meeting Prague, 8-9 September 2022 Session 3

Energy Security vs Energy Transition

Özgür SARHAN

Head of Energy Security of Supply, Markets and Statistics Department Republic of Türkiye, Ministry of Energy and Natural Resources

Energy Security

The IEA defines energy security as the uninterrupted availability of energy sources at an affordable price. Energy security has many aspects: **long-term energy security** mainly deals with timely investments to supply energy in line with economic developments and environmental needs. On the other hand, **short-term energy security** focuses on the ability of the energy system to react promptly to sudden changes in the supply-demand balance.

Energy System Resilience

Number of entry points	Diversity in the energy production mix
Number of electricity points	Diversity in installed energy capacity
Number of energy generators	Largest single source of energy supply/production
Capacity of transmission pipelines	Import dependency
Capacity of transmission lines	Share of renewable energy sources in energy production
Length of the transmission pipelines	Energy reserves
Length of the transmission lines	Spare capacity
Number of connections in the energy system	Ratio of total installed capacity to energy demand
Configuration of the energy system	Energy cost stability
Modularity of the energy system	Energy demand
Percentage of distributed energy technologies	Unserved energy
Number of spare parts	Time of unserved energy
Diversity of primary energy sources or fuels	Cost change

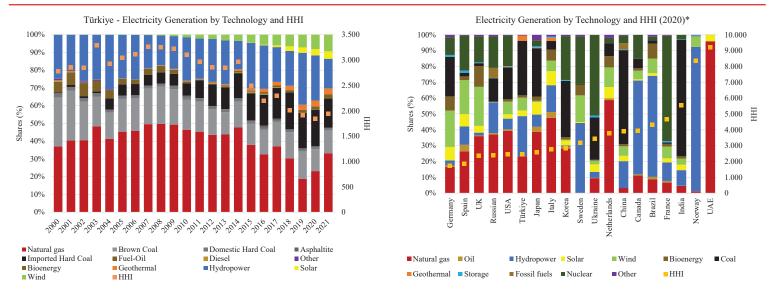
According to the IEA:


Energy system resilience is defined as the capacity of the energy system or its components to cope with a hazardous event or trend, responding in ways that maintain their essential function, identity and structure while also maintaining the capacity for adaptation, learning and transformation.

Latest shock examples:

- Drought in Europe and Türkiye
- COVID-19 Pandemic
- Russia Ukraine War
- Chip Shortage
- · Nuclear shortage in France
- Natural gas supply problems

Source: Martišauskas, Linas, et al. "A Framework to Assess the Resilience of Energy Systems Based on Quantitative Indicators." Energies 15.11 (2022): 4040.


Energy System Resilience Example: Herfindahl-Hirschman Index

- HHI demonstrates the concentration of the individual shares in a system.
- Natural gas infrastructure is important to diversify natural gas supply.
- Türkiye has:
 - 2 LNG gasification and 2 FSRU terminals. (133 mcm/day gasification capacity)
 - 2 underground storage facilities. (5,8 bcm capacity)
 - 5 pipeline entrance. (Russia, Iran and Azerbaijan)
- Exploration works have been ongoing.

Source: Own calculations based on IEA database.

Energy System Resilience Example: Herfindahl-Hirschman Index

- Türkiye has one of the lowest HHI among various countries, which indicates a large diversity of primary energy source in terms of electricity.
- Although there is a high demand increase and relatively low electricity import/export capacity, Türkiye has achieved well-diversified energy mix.

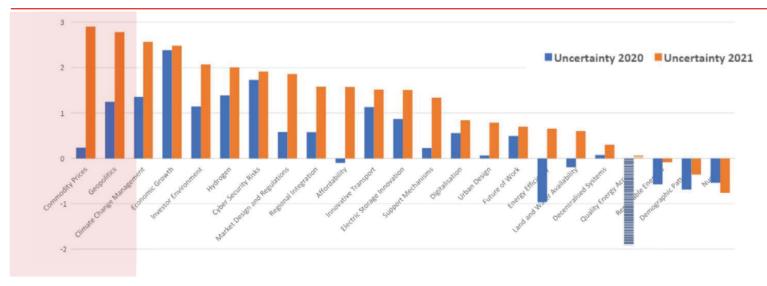
Source: Own calculations based on IRENA database.

World has been changing very fast!

1999 IEA World Energy Outlook

	Levels				
	1971	1997	2010	2020	
Electricity Generation (TWh)	5224	13949	19989	25881	
Coal	2103	5337	7467	9763	
Oil	1095	1282	1442	1498	
Gas	692	2159	4698	7745	
Nuclear	111	2393	2647	2369	
Hydro	1208	2566	3341	3904	
Other Renewables	14	211	395	603	
Capacity (GW)	n.a.	3221	4386	5515	
Coal	n.a.	1030	1311	1677	
Oil	n.a.	410	466	474	
Gas	n.a.	643	1226	1822	
Nuclear	n.a.	352	366	323	
Hydro	n.a.	738	926	1078	
Other Renewables	n.a.	48	91	142	

2009 IEA World Energy Outlook


	Electricity generation (TWh)					
	1990	2007	2015	2020	2025	2030
Total generation	11 814	19 756	24 352	27 232	30 670	34 292
Coal	4 424	8 216	10 461	11 744	13 457	15 259
Oil	1 332	1 117	859	776	717	665
Gas	1 727	4 126	4 982	5 620	6 270	7 058
Nuclear	2 013	2 719	3 107	3 263	3 532	3 667
Hydro	2 144	3 078	3 692	4 027	4 352	4 680
Biomass and waste	131	259	408	522	654	839
Wind	4	173	678	1 010	1 289	1 535
Geothermal	36	62	97	121	146	173
Solar	1	5	67	146	248	402
Tide and wave	1	1	2	3	5	13

	Capacity (GW)					
	2007	2015	2020	2025	2030	
Total capacity	4 509	5 728	6 284	7 026	7 821	
Coal	1 440	1 897	2 108	2 408	2 705	
Dil	445	422	345	300	268	
Gas	1 168	1 464	1 573	1 749	1 972	
Nuclear	371	411	427	459	475	
tydro	923	1 099	1 196	1 289	1 382	
Biomass and waste	46	71	91	114	146	
Vind	96	295	422	522	600	
Geothermal	11	16	19	22	26	
Solar	9	53	102	162	244	
Tide and wave	0	1	1	1	3	

What happened in 10 years?

2020 Wind: 731 GW Solar: 716 GW Hydro: 1211 GW Bioenergy: 109 GW

Uncertainty increased!

- The most striking finding of the latest Global Energy Issues Map is the enormous degree of uncertainty ascribed to almost all the issues energy leaders were asked to assess.
- Commodity Prices appears as the clearest critical uncertainty globally.
- The Geopolitics of energy routinely scores highly on the critical uncertainty list.

Source: https://www.worldenergy.org/assets/downloads/World_Energy_Issues_Monitor_2022_-_Global_Report.pdf?v=1647603169

Conclusion

- Post COVID
- Russia Ukraine War
- Zero Emission Targets
- Localization
- Distributed Generation
- Storage
- Electric Vehicles
- · New Technologies

«Energy transition should be smart. We need to take into account a sustainable energy transition. It should be responsive, rational, flexible and digital. But more importantly, we need to have political consistency.»

THANK YOU FOR YOUR ATTENTION

osarhan@enerji.gov.tr

9