Wind Power

Daniel Bernoulli 1700 - 1782

Born in Holland to a Swiss mathematical family

The scientist who discovered the principle of lift

Aeroplanes, wind turbine blades, even bird's wings

Power from wind

- Wind becomes electrical power through the formula: Power (Watts) = 0.5 x density of air x area swept by blades x wind speed cubed
- Turbines are normally "rated" at a wind speed of 12m/s, but some produce maximum output at higher wind speeds. Power rating (kW) is the maximum power that the turbine is designed to produce
- Mechanism to protect turbine at higher wind speeds furling for small systems, brakes or pitch of blades for large systems

Principle

•Wind blowing over the blades creates "lift" on one side

•The blades sweep around in a circle

•A generator uses the circular motion to generate electricity

- A traditional "Dutch" type windmill
- Used to mill grain
- 100,000's in Europe by 1900

- Wind pump
- Used to pump water from wells
- Multi-bladed
- Typical in the USA "wild west"

Wind Turbines

- Generate electricity
- Modern and aerodynamic
- Large turbines are connected to the grid
- Small turbines can charge batteries

- One-bladed wind turbine
- Spins faster
- Needs counterweight
- Blade can be "parked" behind the tower in storms

- Two bladed wind turbine
- Spins faster creates more noise

- Vertical axis wind turbines
- Called "Darreius"
- Much less efficient, but good in turbulent conditions

- Most large modern wind turbines are 3bladed
- Most efficient design
- Stable

Parts of a modern wind turbine

Generation of Electricity

- Some modern large wind turbines are gearless
 - Rotor connects directly to the electricity generator
 - Generator turns at same speed as rotor 18 to 38 rpm
 - More efficient than gearbox turbines
 - Larger and heavier
 - 20% more expensive
 - Less prone to breakdown
 - Quieter
- For example, Enercon 800 kW

Calculations of energy potential

- The maximum efficiency of extracting the kinetic energy in wind and converting it to electrical energy is 59.3%. This is the Betz limit.
- Modern wind turbines can reach 80% of this limit
- However, the wind is variable
- Turbine capacities are rated at maximum output in winds of around 12m/s
- Combining the wind variability, the Betz limit and turbine efficiency gives the "Load Factor"
- Good onshore load factors are 30% to 35%
- Good offshore load factors are 35% to 40%

• Wind turbine power curves use load factors to predict output in various average wind speeds

Power curve

(GE Energy, 2.5 MW wind turbine)

Some of the largest wind turbines

Manufacturer	Model	Power(kW)	Blade Diameter(m)	Hub height(m)
<u>Enercon</u>	<u>E126</u>	6000	126	ND
<u>Enercon</u>	<u>E112</u>	6000	114	124
Bard	Bard VM	5000	122	90
<u>Darwind</u>	Darwind	5000	115	100
<u>Multibrid</u>	<u>M5000</u>	5000	116	ND
<u>Repower</u>	<u>5M</u>	5000	129	80 - 120
GE Energy	<u>3.6sl</u>	3600	111	ND
<u>Siemens</u>	<u>SWT-3.6-107</u>	3600	107	80 - 96
<u>Scanwind</u>	<u>SW-90-3500 DL</u>	3500	91	ND
<u>Scanwind</u>	<u>SW-100-3500 DL</u>	3500	100	ND
<u>Ecotecnia</u>	<u>100</u>	3000	100	70 - 100
GE Energy	<u>GE 3000</u>	3000	104	ND
GE Energy	<u>3.0s</u>	3000	90	70
GE Energy	<u>3.0sl</u>	3000	94	85
Vestas	<u>V90-3.0</u>	3000	90	80 - 105
Winwind	<u>WWD-3-90</u>	3000	90	80 - 100
Winwind	WWD-3-100	3000	100	90 - 100

Wind Resource

Source - Riso

Azerbaijan

- Study of the local resource is necessary
- Some past studies, such as a Soviet study, do exist, but need to be expanded and in more detail
- Satellite and Met Station data are good for an overview, but not sufficient for detailed site selection and turbine output planning
- Parts of USA and Europe have so many turbines, with reliable output data, that detailed wind speed databases have been built
- These allow accurate prediction of wind movements across nations

Site selection

- Wind speed
- Access to grid
 - Distance
 - Cost
 - Legal Framework
- Planning restrictions
 - National Parks
 - Too close to buildings
 - Bird migrations
 - Airports

AONBs in Northern Ireland

Source: DoE NI

Wind farm Applications in Northern Ireland

Source: NI Planning Service

Technical Considerations

•Wind resource

- Azerbaijan wind map
- Anemometer

•Site survey

- Access
- Ground conditions
- Foundations
- Grid connection issues
- Temporary storage
- Underground cabling

Technical Considerations cont.

- Electricity output
 - kWh per annum
- P = C x LF x 8760
- Where P = Power generated (electricity) in kWh
- C = Rated capacity of the wind turbine in kW
- LF = Load Factor
- 8760 = number of hours in one year.

- Therefore, for a 1MW wind turbine
- $P = 1000 \times 0.3 \times 8670$
 - = 2.6 GWh per year

Environmental Considerations

- Is an environmental impact assessment needed?
- Physical characteristics of whole development
 - Land-use, roads, storage, etc
 - Turbine characteristics
 - Emissions, water, air
 - Noise

- Alternatives
- Impacts
 - Social impacts
 - Fauna / Flora
 - Pollution
 - Landscape

Environmental Considerations cont.

Benefits to the environment

- Reduction in the use of natural resources
- 1MW turbine = 500,000 litres oil; 457,000 m3 gas; 650 tonnes coal per annum
- Reduction in GHGs
 - 2250 tonnes CO₂; 26.3 tonnes SO₂; 7.9 tonnes NO_X per annum

Financial Considerations -Costs

Capital / Installation

- Purchase of Generator / Prime mover
- Auxiliary Equipment
- Civil Works access roads, etc
- Installation of Electrical Equipment
- Grid Protection (Installation & Commissioning)
- Grid Connection and Metering Costs
- Planning and Environmental Impact
- Contingency

Operational

- Insurance
- Maintenance Costs
- Availability of Spares
- Admin / Accountant
- Rates / Taxes
- Land Lease / Rental

Financial Considerations - Opportunities

- Promoting the development of wind-generated electricity and other renewable energy technologies, reduces the demand for electricity supplied by natural gas
- Wind energy could save 457,000 m3 of gas per MW installed, per year
- Approximate export value of \$300 per 1000m3 for natural gas
- If 5000 MW of wind was installed in Azerbaijan, the value for exporting gas is about \$685.5 million per year

OSCC Organization for Security and Co-operation in Europe Office in Baku

Installing – 2.5kW Proven

Installing a large scale wind turbine

Organization for Security and Co-operation in Europe Office in Baku

Ireland's first offshore wind farm

Arklow Bank – 10km offshore from Wicklow
Airtricity and GE Wind
7 x 3.6MW GE Wind Turbines
The world's largest offshore wind turbines when installed
25MW capacity – enough to power 15,000 homes

Organization for Security and Co-operation in Europe Office in Baku

Onshore wind turbines arriving in port

Offshore wind

- UK now global leader in offshore wind installations
- Builds on experience in offshore gas and oil industry

Organization for Security and Co-operation in Europe Office in Baku

Trends

- Wind turbines are getting larger
- 6MW turbine installed in Germany
- Progress within the last ten years means that a wind farm of 10 x 500kW turbines could now be replaced by a single 5MW turbine
- Typical installation sizes are now in excess of 2MW turbines
- Studies show that wind can supply up to 35% of a country's electricity consumption
- More can be accommodated if excess generation from wind can be stored or exported

Comparison of wind penetration levels in various studies

Enercon wind turbines in Germany

Wind Energy in Summary

- A mature technology
- One of the most economic renewable energy technologies
- High levels of penetration in many countries
 - In 2008, 21% of Denmark's electricity demand was met by wind;
 12% and 7% in Spain and Germany respectively
- EU target for 2020 is 34.8% of renewable electricity supply met by wind – about 12% – 14% of EU electricity demand
- Grid integration must be managed

