19TH OSCE ECONOMIC AND ENVIRONMENTAL FORUM "Promotion of common actions and co-operation in the OSCE area in the fields of development of sustainable energy and transport" FIRST PREPARATORY MEETING (DEVELOPMENT OF SUSTAINABLE ENERGY) Vienna, 7-8 February 2011 Session III

EEF.NGO/5/11/Rev.1 8 February 2011

ENGLISH only

Improving international cooperation for developing smart grids

Patrice Geoffron

Professor, University Paris-Dauphine Director, CGEMP

(Research Center in Energy and Utilities Economics)

19TH OSCE ECONOMIC AND ENVIRONMENTAL FORUM
FIRST PREPARATORY MEETING: DEVELOPMENT OF SUSTAINABLE ENERGY)
Vienna, 7-8 February 2011

Background

- ☑ Electricity demand is increasing in OECD and moreover in non-OECD countries.
- ☑ Use of electricity is spreading to new sectors.
- ☑ Increasing share of intermittent and variable energy sources.
- ☑ Classical grids can not meet these challenges.
- ☑ Huge needs of investments...
- ☑ ... but <u>moreover of international cooperation to reduce the</u> technological and economic uncertainties

3

Definition

- ☑ "A Smart Grid is an **electricity network** that uses **digital technology** to monitor and manage the transport of electricity from all generation sources to meet the varying electricity demands of end users.
- ☑ Such grids will be able to **co-ordinate the needs and capabilities** of all generators, grid operators, end users and electricity market stakeholders...
- ...in such a way that it can optimise asset utilisation and operation and, in the process, minimise both costs and environmental impacts while maintaining system reliability, resilience and stability." [IEA ETP 2010]

4

CGEMA WHOOL

Summary

- **⊃** Smart Grids: What is it?
- **⇒** Smart Grids: What is it for?
- **⇒** Smart Grids: What are the problems?
- **⊃** Smart Grids: What is to be done?

Factor driving Smart Grids

Regulatory Mandate

- EU and US climate change legislation is forcing companies to implement smart technology
- United Kingdom mandate for residential national roll-out of smart metering by 2020
- US\$ 4.5 billion
 US fiscal
 stimulus
 allocated to
 smart grid –
 number of states
 now planning
 pilots
- Rapidly developing **EU policy** re. Smart Grid

Future Gen Mix

- Deployments of renewables and distributed distributed generation technologies will affect the design and operation of the distribution network leading to increasing need for automation
- Plug-in hybrid vehicles are likely to further increase the stress on the distribution network
- Low-carbon technologies will mean the energy grid will need to be able to deal with intermittent generation and drive need for

Ageing Grid and Reliability

- Massive Massive investment will be needed to upgrade the transmission and distribution grid over the next 10 years to meet new low-carbon energy requirements
- All new network All new network upgrades will include the introduction of sensors and controls to enable efficiency and improved management
- management
 "The total
 estimated annual
 cost to the US
 economy from
 power outages
 and power quality
 disturbances is
 over US\$ 100
 billion..." which
 can be saved
 through smart
 technologies

Customer Needs

- Under rising
 costs of
 energy,
 customers are
 likely to demand
 a more granular
 level of
 information to
 reduce their
 bills
- Consumer consumer energy awareness and demand for sustainability will require an enhanced ability to measure and manage use
- manage use
 The use of more
 flexible pricing
 mechanisms,
 such as Time of
 Usage and
 Critical Peak
 Pricing, will
 require
 automation

Environmental Impact

- The enabling of energy demand management to management to reduce consumption – peak shaving and load shifting will require more control in the home
- Carbon emissions reduction will drive the need for more information to enable energy efficiency
- efficiency
 Government
 refunds will
 require more
 monitoring of
 carbon
 emission
 savings for
 auditing
 purposes

Technology Evolution

- Increased use of smart technology is technology is increasing data volumes and driving the need for high-speed analytics
- Automated meter reading is quickly energy companies move to advanced metering infrastructures
- In the face of new capital investment, smart grid components are becoming increasingly cost competitive

Source: WEC-Accenture

7

CGEMA UNIVERSITE PARIS OF

Potential benefits

Government and Regulators

- Opportunity for GDP uplift and green-collar job creation
- Effective carbon abatement investment option
- Security and reliability of energy supply improved Creation of low-carbon regulatory frameworks
- accelerated
- Spending efficiency increased by providing options to, rationalize national infrastructure investments

Utilities

- Wider portfolio of generation options
- Grid efficiency, reliability and understanding of power flows increased enabling operational/maintenance savings
- Opportunity to transition from a commodity provider to a service provider
- Creation of new revenue channels and ways to improve customer service
- Opportunity to evolve the operating model and lower operating costs

Vendor

- 1. Opportunity to collaborate with other participants in the value chain to gain market access
- Opportunity to create new products and services to take to market e.g. further broadband business development for telecom operators
- 3. Ability to improve understanding of consumer
- Cost of delivery reduced through mass deployments Opportunity for a machine-to-machine platform that can service multiple industries

Consumers

- Greater choice between energy providers, products
- 2. Greater transparency and control over energy consumption
- Opportunity to see environmental benefits on a household/business basis
- Access to clean technologies, such as electric
- vehicles and micro-generation
 5. Provision of a more reliable service with potential energy bill and carbon savings

Source: WEC-Accenture

Summary

⊃ Smart Grids: What is it?

⊃ Smart Grids: What is it for?

⇒ Smart Grids: What are the problems?

⊃ Smart Grids: What is to be done?

How to finance the R&D?

Estimated global gaps in public low-carbon energy RD&D

	Annual investment in RD&D needed to achieve the BLUE Map scenario outcomes in 2050	Annual public RD&D spending	Estimated annual RD&D spending gap
	(USD million) ¹	(USD million) ²	(USD million)
Advanced vehicles (includes EVs, PHEVs + FCVs; energy efficiency in transport)	22 500 – 45 000	1 860	20 640 – 43 140
Bioenergy (biomass combustion and biofuels)	1 500 – 3 000	740	760 – 2 260
CCS (power generation, industry, fuel transformation)	9 000 – 18 000	540	8 460 – 17 460
Energy efficiency (industry) ³	5 000 – 10 000	530	4 470 – 9 470
Higher-efficiency coal (IGCC + USCSC) ⁴	1 300 – 2 600	850	450 – 1 750
Nuclear fission	1 500 – 3 000	4 030	O ⁵
Smart grids	5 600 - 11 200	530	5 070 – 10 670
Solar energy (PV + CSP + solar heating)	1 800 – 3 600	680	1 120 – 2 920
Wind energy	1 800 – 3 600	240	1 560 - 3 360
Total across technologies	50 000 - 100 000	10 000	40 000 – 90 000

Summary

- **⊃** Smart Grids: What is it?
- **⇒** Smart Grids: What is it for?
- **⇒** Smart Grids: What are the problems?
- Smart Grids: What is to be done?

Various relevant areas for international cooperation

- ☑ Common R&D projects, pilots, ...
- ☑ Sharing information on national experiences results
- ☑ Discussions around regulatory tools
- ☑ Definition of norms
- ☑ Network security issues
- ✓ ...

19